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Abstract

Wavelet bases are used to generate spaces of approximation for the resolution
of bidimensional elliptic an1 parabolic problems. Under some specific hypothe
ses relating the properties of the wavelets to the order of the involved operators.
it is shown that an approximate solution can be built. This approxumation is
then stable and converges towards the exact solution. It is designed such that
fast algorithms involving biorthogonal multi resolution analyses can be used to
resclve the corresponding numerical problems.

Detailed algorithns are provided as well as the resuits of numericai tests en
partial differential equations defined on the bidimensional torus
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Introduction

Varistional approximation methods for partial differential equations are based
on weak formulations and on suitable spaces of approximation.

Wavelets are known to be unconditional bases for a large \ariety of spaces
and therefore are good candidates for the generation of approximation spaces
for partial differential equation problems. The goal of this paper is to show that
moreover, wavelet bases may lead to fast and adaptive numerical resolution of
the corresponding approximations.

Io this paper, asin previous papers (J. Liandrat and P. Tchamitchian {10},
{1)). the wavelets are used to expand the approximated solution of a partial
differentia! equation as well as to approximate the kernel of the diffcrential
operator. They are not used only to perform “the linear algebra™ (G. Bevikin
{2}) related to more classical methods of resolution.

Starting with an expansion of the form f = T, < f ¥, > ¥, . the solution
of the equation Lv = f where L is a constant coefficient ellipiic differential
operator is w(z) = f f(y)K(z2.yMy where K(z.y) = ¥, L=1¥}(z)¥(p).

Under suitabic conditions that will be made precise later. the functions
L7395 as well as LW, are pseudo wavelets. very close 1o wavelets (Y. Mever
{13]). This turns out to provide a stable approximation of u. However, the effi-
arency of the cotresponding numerical approximation of « relics. at least in this
work. on the hierarchic structure of muultiresolution analysis since it provides
fast tree algorithms. We will show that. if the operator satisfies suitable condi-
tions that will be made explicit iater. then the above mentioned pseudo wavelete
are directly related to biorthogenal multiresolution and wavelets. Under these
conditions. competitive numerical algorithms inveiving O{N) or O(.N log ') op-
erations can then be Jerived.

This paper provides tae analysis of the problem and exhibits the rorrespo.d-
ing numerical schemes It is then organized as follows.

The first part is devoted to the general coacept of biorthogonal multiresolu-
tion analysis on L?{R"). In the second part we focus on the problem of the sta-
bility of the multiresolution framework under the action of constant coefficient
elliptic operators. The cases of homogeneous and uon homogeneous operators
are treated separately The third part deals with the numerical algorithms while
the last section is devoted to pumerical tests related to the resolution of elliptic
and parabalic equations in hidimensional spaces

I Generalities: Biorthogonal Multi-Resolution
Analysis in L2(R")

The concept of multiresalution 1s at the basis of our construction and we there-
fore start with a short description of it -




Definition 1.1 (Y. Meyer. [12])
A rreguler muttiresolution enalyses of L2(JR™) is 2 sequence of increasing
closed subspaces V5, j € . V) C Vo). setisfying the followrng conditrions
OIS = {0). ULV is dense in [T(R™):

o~
i f{z) € V) &= f(2r) € V)4
il flrle Vo= flr-Bel:. vhex~:

ir) there enists @ function @ in Vo, such thal the set of funclions ($(r—k).k €
X}, 1s @ Ricsr basis * for ;:

vi the funclion @ 1s regular and locahzed : @ 15 C°0. "~V s aimost
ereryvhere differentiable. and for almost cvery & € R”. for cvery 1ateger
a < r and for all mmteger p. i exists C; such that

@) < Cell + i) 1)

A consequence of 12}, 1) and i) is that each Vj is generated Ly the famuly
of functions {®:)(2) = ¥ P r~- k), ke Z")

For simplicity reasvas. we will only consider the case n = 2. but all the
results presented to this articie cau be generalized in any dimension. We will
always use for vectors a coatracted notation: if ¢ is a bidiinensional vector then
e=(¢3.€3)

1.1 Orthogonal multiresolution analysis

To build an orthonormal multiresolution analysis, the Riesy basis {®(. - k). k €
Z°} is first orthonormalized in such a way that the resulting orthonorinal basis
is stull of the form {®:. - #).ke 2?}.
The wavelets are introduced via the orthogonal complement of 4~ in V- : It-.
Mcve precisely. if E is the set of all vertices in the unit cube [0.1}* and if
E* = [\ {0}. we have the following theorem:

Theorem 1.1 There are 3 functions 8. ¢ € £ in Wy, such that the collection
(W 2~k) k€ Z'.c € E" )} 1san orthonormal basis of Wo. Moreover. each W'
satisfies the same property (1) of regularily and localization as @ end. moreoter.
set1efice the followtng cancelstion property

ImeDIN . suchthat vk = (b k;)eZ? O<k <m,

(R
/ e = O
R.‘

TA collection of vectors {ex. } € A). in a Hiltezt space ¥ 1 a Rty hasic if any vecror
r € H can be writtem in & wiuque way a2 7 = ze; e\ where (: 2293177 i« Rnite and
defines 3 norm ~qnivaleut to,)r ‘g



The scaling invariapce property n) implies that, for all j, the family {95, k €
Z*. ¢ € E°} is an orthonormal basis of I¥;. We will also use the follomug
contracted notation: {¥1, A€ A;} where A: = {A=27/ (b+§) ke X e
£°} Indeed. there is » suugltfonard buectnon hetween A; md the set of paurs
{is. k). & e Z*.: € E*). We will also use the following sels: A= U;eg\; and

An =W,

From thc inclusion 1 C V) the following sceling relatron can be derived:

¥r)= Y M2 -1y,

ex?

while from W C 1) one obtains the following detasf reletron:

(2} = Z N2 -N.Nvs € E° .
Y 2

It is very useful to transforin these relarione using the Fourier transform
which is given by the equality

6= [ fne e,
YR

Indeed. the scaling relations then become

$6) = Vei&/08ig12) (3)
and R
V(€)= A DMED) )

where Mo(€) = T egs hre™" 5 and Mo(§Y= T g2 gl e~ "¢ are C 21 peri-
odic functions.
This leads to :

. x . ¢ X 3
’ - . e - L
¥¢) = II.u»(.)—,y wd Whigr= MG Mgy i
)= AL}
The following cunditions are satisfied
Z M€+ 2e)M (S +2e) =&, V(') EE? (6
1313
and
M AT = & 01bes ey, Ve ) € E? )

and are called. following electrical eugineering terms. the quadrature mereor fifter
conditions. \We will also call the functions M, quadrature murecr filters




Conversely. it is shown in A. Cohen et al 4] that four 27 periodic functions
Me(§). € € E satisfying the quadrature mirror filter conditions (6) generate
through (3) an orthogenal multiresolution analysis if some specific conditions
are satisfied.

Remark:

o In this paper. we will often use specific multi-resolution analyses of £2(R?)
based on a tensorial product of multiresolution snalyses of L?(R). More
precisely. such analyses are defined as follows: if (V;) is the sequence of
spaces of a 1D multiresclution analysis and if )Y, ,.;’* mo and m, are re-
spectively the related wavelet spaces, the scaling function. the associated
wavelet and the quadrature mirror filters. then, the sequence of spaces
{1;). defined as 1 = V; ©V} is a multiresolution analysis in R?. More
over. $'z) = (2, )d:z\ IS tbe corresponding scaling function: (Il ), with
W; =3 g W7 are the wavelet spaces: the three generating wavelets are
Vo ()= ABVTE). ¥ 4(2) = via hw(zs) and W, s(r) = vi(z tea):
M(&) = me (& )m,,(&2) with ¢ € £ are the quadrature mirror filters

1.2 Biorthogonal Approach

A reinxation of soine properties of orthogonal multiresclution analysis can be
performed using the cne biorthogonal approach. This approach provides some
flexibility since it allows to distubute the relevant properties of the multires-
olution (aumber of tero moments, compact support ot regularits ) to the tws
involved multiresolution analyses. Moreover. it will turn out to be that the
biorthogonal framework is “stable™ under the action of » Jarge class of opera-
tors while the orthogonal framework is *fragile”.

Definition L2 We call brorthogonal multiresolxtion enalysis of L*(R?). two
multiresolntior enalysis (1), ¢z end (l );ez such that there ¢nttc fro famihes

ef comcyonlmg scaling falchoac - uJ Foouch that. [t Top) =&, & for
elj }'€Z end k and k' € Z*.

In this case we define the wavelets spaces .\, and .\, a Uiy =, =X,
Cipr =T & X, with {; iX,. [ s4X,. and we 1otroduce the funmom 6\ =
2-'("(2’ ~k)and 6, = 2’?‘1‘2‘ = k), < € ' that generats respectively \, and
.\ and such that (9,. 6, )= &eerdyy b

Moreover. following the ccastruction of orthogonal raltiz: ~soluticn analysis
we define 2 x 4 filters (i e. C™ 2x periodic functions). P, and P.. ¢ € E,
associated with the two biorthogonal multiresolution analvses. These filters
satisfy the biorthogonal quadrature mirror filter relations aquivalent to (6) that



are
YVe.s'ande'€ E. €0, 27)°
Y Pis+ x)Pl§+Te) = b @

el -
Pi(ne') = 5(;.\':6(:.1:* P‘(’C’)

é‘; ']6f3 ey -

As in the orthonormal case, the generalizations of relations (3) and (4) relate
the scaling functions and the wavelets to the filters as

x
A6 = PR = [RR7E. %8 = PUEDHEGD. (9

=1

~ - - = . . > .- -
FE) = Pu§rnTEY = H Pol27°8). 6 (§) = PlSI2FE0. (10)
=1

As insection 1.1. the question to know is under which conditicns the biorthog-
onal filters P, and P, satisfying the quadrature mirror filter conditions (8) de-
fine two biorthogonal multiresolution analyses® Again. a specific condition is
required and has been formulated in A. Cohen et al. 3’. We will use a weaker
version of this formulation adapted to the case of functions with fast decay. It
can be expressed in term of the following theorem for which a complete proof
can be found in Pj. Ponenti {16] and W. Dahmen and A Michelli [5)

Theorem 1.2 Leta > 0 and lel P, (§) end Pu&) c€E. be eaght C” 2% periodic
funclions satisfying the hiorthogonal quadretere mirror filters conditions §).
Definrmg r. 7, 0, and 6 using formnie (9) end (10;. of
- there entst C and p > 0 such thet for all § € R?
P < CU+iEh'~*  H&O < CO+En=t==. an

vk ke X

(rir - k)L F(r - &' = &, (12
- end of
ae) A8
pdcex [ 2l (13)
/l’ EEa Jm: i€ &
Aem

o the sequences of subspaces (Uideg. and (l.",- Y;eZ gemerated respectively
by {ma.k € Z?) and {70k € Z7} are o brorthogonal multiresolution
enalyses:

o the warelet familirs { 63r) = POV k) A€ A} and {fur =
6 (¥r -kl A€ A} arc tuo brorthogonal Rees: bases of L3R,

e



II Constant Coefficient Elliptic Differential Op-
erators and Biorthogonal Multiresolution Anal-
ysis

II.1 General resuits

The starting point of this section is the following remark. Given (¥,) a family
of orthanormal wavelets and knowing f = 3 (f.¥,)¥,. the solution of the
equation

lu=f. Ly
where L is an elliptic operator of order ¢ is, at least formally.
EDYNTA NIALH i15)

When L and L=° are bounded on £3{R?). the families {L-'W¥,} and {L°¥,}
ate two biorthogonal Riest bases

The question we address now is related to what happens in the specific case
of wavelets when the operator L is unbounded (as in the case of a diffecential
operator).

In the following paragraphs. we first see that. assuming some compatibil
ity conditions between ¥° and 1. the two farnilies of functions {L='¥,} and
{L*¥,} are wavelets or pveudo wavelets (Y. Meyer {13') depending on whether
the operator is homogenecus or nct. Then, we show that in some cases. a
biorthogonal framework embedding {L.='¥,)} and {L*¥.} can be built.

To be mote precise. we take (1.} a r-regular multiresolution of L2(R?) con-
structed using a tensorial product of two 1D multiresolutions and L a conttant
coefficient elliptic differential operator. Let us write L= ¥, . ., a,D° where
D is the operator -;-{; \Ve define in & ©tandard way the symbol of L as

€)=Y a0k, (16)

It is a polynomialin § of degree s and. if f € C<(IR?). we have the well known
formula

R LI = filieie (r
We nate formally .
=LV and# = L' (de
and more generally,
M= 270000 and 8 = 2L (19}

Mote that when L is boincgencous #5ix) = X8 (Xr - &) and #(r) =
20(2°2 = k) while. iu general this ¢ not true.
Lhen we have



Theorem I1.1 Given ¢ famuly of r regular warelets wrth m + 1 zero moments.
tf L 15 ¢ Aemogeneons operelor or f L s an inkomegencous operator vtk a
strictly positive symbel of order s > 0. exd such thatr > s and m > &. then
Regulanty: ¢ € 1™~ and @ € H™™*
Loceh:ation: for all multr-indices® 3’ and ~ sach that ~' < r -5 aad
1€ r+s—1 end all integersic IN,

BV € G 2NIE (14 ¥z~ |
EE)] < MY (1 oA

Cancelation: Let 2t = (£5 233),
/::‘f(:}dx =0 0giti<m+a
fzx'i‘(:)d.r =0 0<iki<m-a,
vhere a = 2 1% the Ao:o;rneolt case and a = O 1x the 1mhomogeneons one.
A complete proof of this theorem can be found in Y. Meyer 13]) and Ph.
‘Tchamitchian {17].
Remark:
o Following Y. Meyer {13] and according to Theorem 11.1. a factorization
of the operators L° and L~! can be performed as L° = ("¢ " and

L-'=Col* whereTisa d:agonal operator 1n the wavelet basis defined
as: ta — Yy, and where C and C are bounded on £? and defined by

C oy -6y . 6 N t‘,\'-‘g,\ . (20}

The operators C and € act Just as a transformation between two bases.
The operator I' is nothing else but the classical preconditionirg operator
for elliptic problems (S. Jaffard [8)) that mimics a diagonal derivauon in
the wavelet bans

In other words. thanks to this factorization. the computation of the image
of a function by an ellptic operator ot 1ts 1averse can be transformed into
a well conditioned problem using a diagonal operator in a suitable wavelet
basis. This is exsential since it provides the numerical stability cf the
further developed algerithm.

We cau then rewnte 113) as
EDIL A BT 21

We call a muki-index any coarple of integer +* = ;. ~'and 9§ = f_‘—‘rﬁ
T 3




An important issue. as far as numerical applications are concerned. is the
computation of the sum (21). Indeed. even if this sumn corresponds to a pseudo
wavelet decomposition. fast algorithms for the computation of the sum are not
available. In the framework of this paper, the fast algotithms are linked to
the concept of multiresolution analysis presented in secticn I. We prove in
the foliowing sections that. under suitable conditions. the comstruction of a
multiresclution analysis embedding the function 8, is possible. Moreover. we
provide explicit expressions of the quadrature mirror filtc.s required for the fast
implementation of (21).

The starting point of our construction is due to P.G. Lemarié [9° who con-
structed in the one dirnensional case two biorthogonal multiresolution analyses
from an original orthogonal one and from the derivata operator. We generalize
this approach to any dimensioas and for any homogeneous elliptic operator.

Iu contrast to the classical constructions of multiresolution analysis. this is
an inverse problem. Indeed. knowing the two dual wavelet bases we car define
two sequences of subspaces { X.) and (.\ )

A; =span{da € Nl <) 22)

.\:. =Spm{0x.)€.\,uf<j} . (
The open question is the following: how can we construct two sequences of sub-
spaces ({';) and (t ) for which (.X:) and ( \ ) play the role of two biorthogonal
wavelet spaces

In other words. the problem is the construction of the generahzed scaling
functions « and ¥ relared to 0 and 6.

In the case of nou houmogeneous elliptic operators the approach used in the
homogeneous case can not be transposed and we will not be abie wo define a
multiresalution framework embeddiug the space sequences (L', ) and (U;). How-
ever, we will show that the essential property of embedding spaces as well as
the existence of scaling (3) and detail (4) relations can be saved. This will aliow
us to derive {ast and stable algorithms to sum up (21) even in the case of non
homogeneous operators.

II.2 The case of homogeneous elliptic operator

In that case the natural candidates for =1 L= ®,. are not defined in L2 for the
basic reason that @ does not belong to the range of L. or, in other words, suffers
from a lack of zero moments. Using a preconditioning operator. we will adapt
the function @ to the operator L=! (1.e. we will transform @ so that it enters
the range of L) while preserving the two scale relations (3) and (4) We will
then check that the resuiting multiresolutivn analysis is fitted to the functicns
4, and 6. previously defined
More preciaely. we have the following theorem
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Theorem IL2 Let (1)) be the family of embedded spaces of an v-regular mul-
tiresolution enalysis of L3(IR?), let L be « homogencous operator of order s end
of symbol ¢ and lel S be @ 2x pervodic function, not venishing on 10.22[% end
equizalent to o 1 zero. Ifm > s< ). r > e~ 1. and if the erght funclions P(€)
and F’, §). £ € E defined as

4 - S(S) [ “- - -l-. §(—2i’. ‘ . {
Pi) = 2 m o), P(é) = ¥ 0 AT 3N (23)
Sm— g bt l ."‘ “
P = PTO M. A6 = F—s\?\ (29)

are C°. a > 0 then they satisfy the quadreture mirror filer conditions (8) end
define two brorthogowal _multircsolation emelyses. The corresponding wevelets
are the functions 6 and @ gad the scaling functions v end 7 ere derved Jollowing
(% and {§0).

Proof:

O By construction all the filters are C* with some o > 0 and they satisdy
the hiorthogonal quadrature mirror filter coaditions (3).

The only point to prove is the convergence in L7(IR?) of the infinite prod-
ucts (9) and (10) gefining the two scaling functione. We will use the following
lemma:

Lemmn IL1 Let p(x). £ € R’. be o homogeneous polynomiel of degree s,
and let S and C, be 27 periodic functions: then the follorving propositions are
equrcalent

1

= ; S{x)
HCQ?'-’:) = == {(25)
o »r
n!
S(2) = 2CQa/2)8i2/2) . (26}
Sie) ~ pis) . (23}

Proof:
8 The equaticn (26) 1s obtained from (23) written for r and 2/2. while (29
18 derived from (25) when r — ( since necessarily Ci0) = 1.
Conversely, {25) is obtained from (26) . Indeed. since
Sty L S S@Np) &
ey ¢ (212)””2) T op2-Np H(

s



thanks 0 {27) we obtain (25) when ¥ — . @

This letuma aliows us to calculate the infinite product (¢) and (10). and to
[ 38

2

28 = [ pizmie) = Hm— ‘)Hmo("-'&)mo('l"'&)

»al

[d
no) = [] Aizo = IIC(:z"s\nmam"mmz
s=! ;= 13
aud finally, )
Sy o SO 2, 7 o, -
" = o(6) *S) . FE) = o3 ¥ . (23

The function @ being r-regular the condisions (11} are trivially satisfied.
Defining the function 9 et ] by {3) and (1) we get

F) = PiDRYD = FHONE)

] (293
N o ‘
8 = Pagaden = 18

L3

The wavelet admissible conditicn (13) is immediately satisfied thanks to Theo
rem I1.1. Firally the assumption (12) is satisfied by construction. that completes
the proofl. =

Remarks:

o Note that here. thanks to homogeneity. the subscript  recovers its classical
“wavelet™ meaning siace in that case. i (r) = 2N X r-k) and b2 =
”"39((2-': - k)

e The relaticn (25) is a gereralization in sny dumension. of the classical

formula
ncos('z":) = m;(:

used by P.G. Lernare for the first order differential cperator in one di-
mension.

o The function § can be interpreted as the symboi of a difference operator
that we will call D, If Sis a lngonomemc polynomial. then Dy is a
finite-difference operator and S is €. The fact that Sir) RastACaRE

Just the translation that D: is consistent with L. Moreover. S rernoves
exactly the singularity of ¥ for ¢ = 0. Conversely for r. the singu larity

10
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given by S at points (211:.2“). n € Z. will be removed exactly by ¢ in
sero and by the seros of @ at points (2xn.2zn). n € Z*. Notice that this
last pomnt won't be true for inhomogeneous operators.

From a certain point of view, D; can he seen as a preconditioner for L
siace * and ¥ are defined by

r=L1""De®and # = (D} ) L@, (30)

¢ In one dimension there is a canonical choice for S and therefore for Dy
such that. if the function # and ¥ have a compact support. then . 5,
#. and # are also compactly supported. Indeed. in that case we have
pecessarily o(§) = af’,a € €. Therefore, the canonical choice for S
is S&) = e(=iY (1 =) and Dy is then a non-centered finite
difference approximation of L of order 1. Indeed. it is well known (see
1. Daubechies [6]) that the quadrature mirror filters related to orthogonal
compactly supported functions & and ¥ are: mo({) = (1 + %)™ L(£)
and my(§) = (1 = e~ (€ + =) where £ is a finite trigonometric
polynomial. Then we get

P& =2 (14977 Lig).

PiE) = 23 (1 - ¢ (1 - &)Y TiE+ M.
Po&) =2 (1497 (2 + =6 £16).

Pi§) = 2ttt (1= O™+ 1)

which proves that P.. P,. P, and P, are also finite trigonometric polvno-
mials. Then. using the following lemma borrowed from G. Deslauriers and
S. Dubuc [7] we deduce that the fuactions *. =, 9. and @ have compact
support.

Lemana 11.2

yreE = Z:;\‘ e uth z:;‘\' W = 1. then [I75, T(273€) is a»
enfire function of ezponeatial type. In perticular. it 1s the Fourer trans-
form of a dsstndution with support 1a [N|. X\,

Clearly. this canonical form is no longer avaiiable if the space dimension
is larger than 1 since the mult:d:imensional quadrature mizror filters can
not be factorized as above

IL3 The case of inhomogeneous elliptic operator

Here the non homogeneous property of the operator is obviously not adapted
10 the scale invariance property of the multiresolution analysis. We will see

n



however. that introducing at each level a new scaiing function. an embedded
family of spaces can be constructed which preserves the mathematical properties
rejevant for numerical applications.

The natural candidates for ) are a the functions L=°®,  They are well
defined iu L?(IR?) but suffer now from a lack of localization when J increases.
Indeed. we have

im | 27" el (P -Gz =270 =0

_'—-*&
[ 2R 2N

where G s the Greens function of the operator £ defined ss G( =10 For
example. when 2 = 1= G(€) = 1/{(1+EM and Gle) = ¢='7 G decreascs fae:
but mathematical and nuraerical difficuhies come from the fact that the family
of functions {Gi{z - £2=7).k € Z°} is not a set of functions rescaled witk ; (in
other words. tLis family is not obtained by rescaling and translation of a single
witial functioni. This implies that the control of the acalization by the index
J is lest. It follows that the fanuly {L~-®\. t € Z?} is not a good basis te
reconstruct our solution.

Let us show now that. however. a process very ciose to the one used 1n
the homogeneous case will provide an efficient algonthm for the suminstion of
formula (21).

We mimic the coustruction perfotmed in the homogencous case Let A
be an r-regular multiresolution analysis. let I be an elliptic operates of order «
with constant coefficients and ¢ its symbol ( we pow suppose o(£) > 0~ > (1 ¥E)
Let us also define the hcmogencous polynomial of order =, o u the pnncipal
part of o. and let §(§) be a ™ 2= periodic function with S:§) ~ £ where

n will be fixed later. £
Then. Vj € Z. we define a difference operator D, by s symbol 88 ¢
Following the previous section. we define ¥). & € Z

2"":'-‘[)!’_-. (31‘

L
"

*2

and

-

Ba = BN, 132

By construction. and thanks to the fac: that | 1e a constant coeffcient
operator we have Fir) = #,(z - g-\ and v NEIE 8 T - &) where

. Py €0
By amtiggan 28T <
l > S8 s (33
and .
r~ .- '2J}
H(&r =2 ':f 134

12



Remark

¢ The functions #; mimic the function # defined in {28). Unfortunately. it is
not possible 1o define the equivalent of 1 (28) sinee D' L®;:: € L2. Note

however that. by chance. (13) involves directly the 8, funchons

Then, with B and B, defined in (23) and 24 we get the following scaling
and detail relauont

RE) = PEE ) 5
Q) = 21’.«.’2'")9.,.(0 Ve € £-

Remark:

¢ An important point is that the filiers P, are independent of the scale
index j as it is originally the case for standard multiresolution analysis.
Furthermore . since they are defined by (23) and 24 the filters P, are
directly related to the homogmeous operator L cf symbol o f n = 5
This poirt is essential sir.ce 1t means that if D is consistent 1o L. then
the tree algorithms related o the multiresolution spaces (U y) and used to
sum up (21) are stable even if the functiont %i(z) are not standard scaling

functions. Indeed, S(§) /0() —¢_, 0 and therefore ?,(0) =0

In other words, even if the functions 7;4(x) are used as scaling fuactions on
the range of L. they have 2¢ro moments as wavelets have.
Finally, we ¢can prove the following theorem:

Tbeorem IL3 ForO0 < n < x s < rerds < m. the functions 7y defined
{13} and (31) satisfy

e . oy -l ar a= —#-.-3-~Z Jas
a Fair) Sa .).v.hl 1 (3*3‘Ir—2 )‘_“ LEY R} i 136)

Ifn=s andif i’,({). £ € L ere C. then stable tree sigorithms ere availadic
i @I X e
N<C<C <+ such that if f = ‘:,“:-; dr\0\. then
CYMF <hifits ¢ Yt 37)
3 A
Proof.

e Since 5 € O the we can apply 1heorem 111 that proves the lacalization
inequality (36),
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o The relations (35) defines directly the tree algorithins required to compute
the coeflicients {c,+} such that

Z di6) = ZCM’&
e

and since, when n = s, the involved quadrature mirror filters could be
related to the homogeneous operator L. the stability of the algorithm is
equivalent to the stability of the transform {e;:3 — ffor f = @iz Xi.

o This transform is stable if and only if the family {Fir. * € Z?} 1s a Riew
basis of @21 X:.
We have

W

/Zcq )g d:

tex?

Z c.e"’ M m lc(g ?.)‘ N
113 o

'!
t:"sm '-|
g:i :-{(4“") | €.

I

<o. 2:]

Since {®,¢} is a Riesa basis, since $(¢) is bounded. and since ¢ is bounded
from below. then I f II°< 'Y |c;xi?. which is the second part of the
inequality 137).

To prove the first part of {37} we use again the fact that the filters P and
P, are related to L

Indeed, if we define 9, replacing o by & in (29} and if we define f as
/=T, d\d: then the trapsform f — {da} is stable Moreover thanks o

theotrem 1.1, the operator f — j which can be also defined as ¥, — 3,
1s also bounded (Y. Mever {13]). Therefore the operator f — {d\} s
bounded that is the first part of (37) and that completes the proof.

III Approximation and Numerical Resolution

of Elliptic Problem on the Torus

This section is devoted wo the approximation of elliptic problems on a sequence
of eabedded Galerkin spaces associated with a multiresolution anaiysis and 10
the correspouding numerical aigotithms.
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Classically, we will consider the problem with periodic boundary conditions
to avoid the difficultics of general boundary conditions. We will use a r-regular
multiresclution analysis of the torus Tja 1p = (R/Z)* constructed using a clas
sical periodization technique (Y. Mever {12]). We take as granted that. with
minor modifications, the results proved on the whole line can be transposed to
the torus. In that secuion. homogeneous and inhomogeneous operators will be
treated similarly.

ITII.1 General formulation

The general formulation of the problem it

Fiad v € Tj: 1 such that
m Lu = f 13

with f € 1ixy;: and L @ consten? coeflicrent clliptic operator of
onder s.

Standard variational approximation (P.A. Raviart and J.M. Thomas [14])
leads us to look for the solution of a weak problem in so called Galerkin approx-
unation spaces 1. where ¢ is a scale related to 1, wath |, — T(o IR

A matural chowce for ¥, i Ve = V7 5 where 17 bdongs to a multiresolution
analysis of Tj 12 of the type described above Indeed. we then have the following
inequality guaranteed if the involved nwltirecolution analysis s r-regular.

Vs<r.3e>0VfeH lIf —Dhefil: < C277 | fliy (39)
where ll‘ ¢, J < 0. stands for the orthogonal projection on LN
Then a standard Galerkin ApPprOXimation writes

Findu, € 1 C T: g such thet

(P MLl pup = Dp f. (4

whete fl,-a J £ 0. stands for the extensicu vperator from Vite T,

This nppmch leads us tc replace L by the approximation 1y -l Il; RE The
correspoeding aurnerical algonthm- are reduced tc linear system solvers once a
basic of }.” has been chosen (P.A. Raviart et al. [14))

iThe symbol ® wtanda for the periodization operator oo 'O 1FF. We recall that dm!’"
22 1/3 dim iV, and that 17 = span- @y = 1),
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Numerically. an optimal choice for the expansion basis is the wavelet basic
of L,>: {®7,.97.1 € A5}V, since the corresponding stiffness matrix. is sparse
and can be easily (i.e using diagonal matrices) uniformally preconditioned (S.
Jaffard [§)).

II1.2 A different approximation

The main purpose of this paper is tc define a different approximation of L and
the cormpondmg nuinerical algonthm Taking the set of funcuom {0' A€
AZ7) (defined in (31)) and defining {7 = span{L="@Zy. 6. A € A, }. we get
an approximation of u as

DB RUTA NENFSTX SAVASE 34 (N
real
Indeed.
.,.—.r*m-[:ﬁs -1y (42)

where P~ ', is the projection or 1 ortho:onal to ly

This formulmon of u, shows chu the con\ﬂgence of up towards u when
P —  is straightforward since the set l v 18 3 farnly of Galerkin spaces for the
suitable space of definition of u.

Moreover. the stability of the algorithm is a direct consequence from the
classical preconditioning properties of wavelet base exparnsions (S. Jaffard &)

II1.3 General scheme

The numerical algorithm derived from the previous section is now presented
in its collocation version. We call I, the sct of points (Z ()0.2])2. Then.
J; = {22k .k € I,} is the swo dimensional regular gnd of scale 2=/ related 1o
[0 17

lot the numencal implementation, we assume that the space 157 is such that
eny continncns function f € 1.7 1s enembiguonsly defined by its rahec on the cet
of pornts Jp. This assumption wmcﬁed by the even order spline multiresclution
we will use in the numerical tests) allows us 1o define the collocation projection.
Crr. from the set of real sequences (f; digs, to V. as

Y(aher, Cor{ifiher,)=f & f€ V) and £:127Fk) = fu. vk € .

At 2001 as we define f € \ by its coordinates on the basis 0’,, the opera-
tor Gy 7 Appears as a ducme ceavolution operator involvicg a 'o-ca!kd inter-

pulant ﬁlter I, 1€}, The operator C,‘. is alswo a couvolution operator called the

Again. A3 = LT,

ZNo.¥{2.reF°..

A; wih. in the periodized framenork. A = {\ = 27 (2 - %) .x €



pownt value operator and involves the point value filier PV, i§) defined from
{®;2(J,)}. Obviously, le,(£) and Pl (€) are inverse. Let us remark however.
that the point value operator always exists as soon as the functions ot 8re
continuous.

For the implemeentaticn, we therefore replace l]‘.-'- by Cy'- in (42) and define
therefore u, as
Up = L‘le,vf .

Given the poirt values of f on the grid points J, . the algonthm provides the
values of u; on the same grid. More precisely. the algorithmn can be presented
as follows:

1. The input of the procedure is the set of values {f{J;)) from which the
imterpolant functiou f;, € \;.’ is constructed using lo,($):

AR PN A

tel,

2. f; is then decornpesed into the wavelet subspaces I17.0< j < p—1 and

1o as

f= Y e +a:
agrad!

where Cop = ll‘-:(f)

3. u; then becomes
u = z 275 (f A ®T +

agar!

» here 5;' = (2'L=%.) . Here. “os = cx0/0(M) for non-homogenenus
operators. For homogeneous operator ¢f- should be given. Note that in
that case (0} = 0 and f should bave at least s vaniching moments: the
fact that ¢, should be given cotresponds to the ill posed propetiy of the
initial problem in L2.

4. u; is then expanded in term: of the set of functions (3. & € I, )} using
the tree algocithms related to 87 and Tea 88

- 2"
u = C’har* .

¢!,

S. Finally. the grid point values of u, ou J, are estimated using the powns
value filter P‘~’t£),
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It appears clearly that various precalculations should be performed. In the
first step, the interpolant filter related to @,: must be known: for the second
step. the orthogonal multiresolution analysis quadrature mirror filters Af, should
be used and. for the fourth step the corresponding biorthogonal multiresolution
quadrature mirror filters P, are required. finally. the point value filter related
to 7 is used for the last step.

To be more precise, we haw to make tome remarks that help to reduce the
complexity and storage. For steps one and two. tensorial properties can be used
in a very classical way to reduce the 2D-algorithrns involved in 2(dim (1 SN 3 x
1D- algvmhms It is then enough to know the one dimensional mterpolant ﬁlter
related to o), and the one dunensional quaarature qurror fillets m¢. £ € E

For stepe four and five, where the filiers P, , and the point value filier P\~ are

involved, we can note apply this ssmplification and we have a full 2D-probltm
We are now able to sununarize all these precalc ulations in the following step
&

0. The computation of the following filters is performed (this is presented for
the spline multiresolution analyvais case)

-Interpolant filter related to ye. I, analytical formuias in one di-
wnension are available in V. Petrier and C. Basdevant {13).

-Orthogona! 1D multiresolution analysis filters m,: analytical formu-
las are also available

-Filters P, of the Biorthogonal Multi resolution Analysis: These filters
are constructed from m, and formula (23) and {24). In fact only Po

and 7, ;. have to be computed since we have 5, o, &)= P (8.8
-Point value filter. PU~ related to 5. This filter is computed fmm

formmla {28) and the aml\ncal expression of S, ¢ and ®(£). We have
successively

= L2 Y Fue T e R
(X3 &

ira) = 1/(22 Z (: ?c(uw?"‘) I ro€d,

"‘l' 'E"

Practically. 43 is truncated according 10 a prescribed precision. This is
possible because F(§: decreases fast.

Remarks:

¢ Qne should again cmphasize that the entire aigorithm: is dased en con.
velution operators  TLauks 1o the periodic boundary conditions. the
convolutions can cither be parformed directly or using a discrete Fourier
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transform. The implementation presented in this paper uses the Fourier
transforms since it is optimal for non compactly supported filters on non
adapted spaces of approximaticn.

II1.4 Detailed Algorithm

This section is devoted to the struciure of the code. Basic tools. such as Fast
Fourier Transforms. Convolution,'Decimation algorithms, or Terin by et mul-
tiplications ate not described.

As can be seen from the general scheme presented above. the rain code
mvolves only two more elaborate routines that will be called the Precelcules
rovtine (step 0). and the tree algorithm routines. The trec algorithm routines
may of tnay Dot use the tenscrial structure. They will be called consequently D
Tensonal Tree Algorithm-D (steps 2) and 2D Noa Teasorsal Tree Algorrthm-7
(step 4) where -D and -1 stand for direct and inverse. \Ve recall that the steps
1 and § are convolutions and the renormalization performed in step 3 is term
by term multiplication.

The trec algorithm routines are becoming very classical and therefore we
will not describe themn either. Note however, that since only couvolutions are
performed in our algorithm, we only use the discrete Fourier transform of the
wavelet coefficients (and not the corresponding values) at every scale, that re
duces significautly the complexity

We now give the detailed description of the main program (ELLIP ) and of
the precalculus program (PRECAL) in pseudo code.

The following example shetches the structure our programs.

[OUTPUTS) =Program( INPUTS)
% Comments

¢ Body of Program:

{

(OUTPUTS1]= Sudbprogram1(IFPUTS)

INPUTS2 = QUTPUTS!

(OUTPUTS) = Subprogram2(IFPUTS2)
}

Our variable descriptors bears somie resemblance 10 the C language as well
asto the MW AT L 4B conventions

I11.4.1 Preliminary computations

The symbols ', «. .«. and ./ used to present this program are borrowed from
MATLAB aud mean respectively. the transposition. the matrix product. the
term by term product, and the term by term division. We alse use the foliowing
u sub sampling operator @ - n : § defined ax: If a is a 2D array of size 2° » 2°
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B2 2% : 2P 1: 2" : 2P) is a new array of sive 27" x 2*~" given by aii.j) =
a0 2N)). (LN E I,
Program PRECAL

(QNFBIV, TAUTV] = PRECAL(p,psax,QMFV,PEIV,SW,CV,SIGNA)

SINPUT:

*p => index of the approximation space Vp in which the

8 elliptic prodlem is solve.

Spmax -> index of the approximation space Vpmax in whick the

precomputation of TAUTILDE is done (it depends on the

] prescribed precisioa).

SQNFY -> structure containing the quadrature mirror filters in

one dimension:

QMFV.»0 -> 1D array containing the quadrature mirrer tilter
coetficients associated to the scaling functions;
size(QUFV.n0)->2"p; QIFV.20(i) = »0(i/2°p),

i beloag to {0,...,2°p~1}.

QMFV.»1 -> 1D array coantaining the quadrature mirryor tfilter
coefficients associeted to the wavelet;
size(QUFV.n1)~>2"p;

QUFV.a1(i) = m1(i/2°p),1 belong to {0,...,2°p-1).

#PEIV -> 1D array; size{PEIW)->2"pmax: mhere pmax is given

and pmax>p;: PRIV(i) = the value of the Fourier transform

of the 1D scaling function at the point i, i beloag to

€0,...,2 pmax-1}. Used to compute the value of tautilde on
the finer grid.

=> 2D array coatainiag the sampling of the function

S used for biortlogoaal filters;

Size(SV)=>(2"pmax X 2-pmax); SV(i,j)=S(i/2 pmax,j/2 pmax),

(1,j) delong to {0,...,2 pmax~1}-2.

L I B B 3 BN

=> 2D array coataining the sampling of the function
S(2¢)/(2°s S(uw)) Size(CW) -> (2°p X 2°p); CW(i,j) »
$(2i/2°p,2j/2°p)/ S(i/2°p,)/2°p),

(1.3) delong to {0,...,2°p-1)"2.

$51GNA -> 2D array containing the sampling of the symdol

...ﬁ"‘ﬁﬁ."‘

s of the operator Size(SIGNA) -> (2°pmax I 2°pmax);

s SIGRA(4, }) = signa(i/2 pmax.3/27p),

s (i,)) belong to (0....,2°pmaz-1)"2.

L

SOUTPUT:

SQNFBIV -> structure containing the biorthogonal quadratare
L4 mirror filters related to tde tawtilde functions:

L QNFBIW.PTILDEO-> 2D tab ccataining the biorthogonal
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quadrature mirror filters associated

to the scaling functioams;

size (QUFBIV.PTILDEO)->(2°p X 2°p):
QUFBIV.PTILDE1-> 2D tadb contaiming the diorthogenal

f2ilters associated to the first wav-

elet ;size(QUFBIV.PTILDEI)-> (2°p X 2°p).
QNFBIV.PTILDE2-> same as QNFV.PTILDR1 for the second

wavelet (not computed QMFBIV.PTILDE2 =

QNFY.PTILDE! transpcsed).
QMFBIV.PTILDEY-> same as (IFV.PTILDE1 for the third

uavelet.

& Computation of the filters Ptilde

QNFBIV.PTILDEO = ((QNFY.n0)" * (QNFU.m0)) .¢ CV;
QEFBIV.PTILDEL = ((QIFV.20)° ¢ (QNFV¥.m1)) ./

(2°s S¥(1:2°(p~pmax) :2"pmax, 1:2"(p-pmax):2 pmax);

QRFBIV.PTILDES = ((QUFV.a1)®' » (QF¥.m1)) ./

(2°s SW(1:2°(p-pmax):2°pmax,1:2" (p~pmax):2°pmax);

# Computation of the point value filter related to TAUTILDE

TAUTH = ( (2°(ps) » PBIW’ o PEIV) .* SS)./ SIGMA;
TAUTW = Periodize(TAUTV, p);

The subroutine Periodize is pot described bere. but it is a straight forward

transcription of 43.

IT.4.2 Main Program

Meain Program Elhp

{Ux] = R1lip(FX,QNFd,FIV,QNFBIV, TAUTV)

SINPUT:

8FX  -> 2D array containiang the sampling of the functiom
1, Size(F1) => (2°p X 27p); FX(i,j) = £(i/2°p,j/2°p),
s (i,j) belong to {0,...,2°p-1)}"2.

SFIV -> 1D tad of data containing the interpolation filter
s related to PII_pO, size(FIN)->27p;

SQNF¥  -> gee PRECAL

SQNFDIVW -> gee PRECAL
STAUTY -> see PRECAL
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SOUTPUT:

SUX  -> 2D array comtaining the sampling of the approxi-

] -mation u_p; size(U1)->(2°p X 2 p), UX(i,j) =

8 u(i/2°p,372°p), (i,j) belorg to {0,...,2°p-1)}"2.

#

#TAUTW -> 2D axray containing the values of the Fourier

8 transicrm of the szcaling function TAUTILDE st level p
L

STENPORARY DATA:

$FV  -> 2D tab contaiming the fft of FX; Size(F¥) ->

L] (2°p X 2°p):

$CPY -> 2D tadb containing the fft of scaling coefficient of
s FX; Size(CPV) -> (2°p I 2°p);

DV -> Structure of 2D array comtaining the Fourier transform

s of the wavelet coefficients: size(DJV) -> (2°p X 2°p);
SCTILDEPY
] => same as CPV for UI:
SUV > 2D tab coataining the fft of UX;
]
{
]
# step O
(F¥) = Fast Fourier Tramstorm(FX)
® step 1
e
(CP¥] = FW.oFIV (Term by term multiplication)
8
8 step 2
 J
(DJW] = 2D Temsorial Tree Algorithm_D (CPV,QNFV)
8
& step 23
E
(DJ¥} = DIV.*(2"j8) (Teram by term sultiplication)
8
¢ step ¢
¢
(CTILDEPW] = 20 Noa Temsorial Tree Algoritha_l (DJW,QNFBI)
#
8 step §
8



(UV] = CTILDEPV.*TAUTV (Term by tera multiplication)
[UX] = Inverse Fast Fourier Traasform(UV¥)
}

IIL.S Storage and Complexity Analysis

As the computation is clearly separated into precalculations and actual umple
mentation of the algorithin, we will also present the storage and complexity
analyses separating the two parts. One should remember that the precalcu-
lation is done once and for all while. as it will be the case in section IV, the
algorithm can be applied iteratively.

We will not discuss the complexity related to one-dimensional computations
as well as the storage connected 10 one-dimensional arrays since both can be ne-
glected in our bidimensional implementation All the evaluations arc perforroed
for N = dim}, = x .

Storage

Permanani storage (precalcuietions ). The structures QNFBIV and TAUTY tep-
resent four bidimensional arrays of size V.

Temporary storege (actual algorithm;: The storage rviated 1o bidimensional
arrays can be reduced to one arrays of size V.

Finally. the total memory wsed corresponds to five arravs of size N
Complexity analysis
Precaicalus: The computation of the four arrays in the struciure QUFBIV is

donein C x V.
The computation of PV3, is petformea in C x N ope:ations. The value of
>

C depends on the precision ::f the calculation

Mamn program:

Fast Fourier Transform and Inverse Fast Fosrier Tramsform in-
volve C x .V log{.\') operatious

The complexity of the Tern by term multiplication is N.

Tree algorithe~D and Tree algorithe-I are based on convolution and
decimation operators. These procedures involve therefore (" x A’ opera-
Lions.

Therefore the fota! complexity is O(\ logy.V))

In the following section we use these programs iteratively.to solve the 2D
Burgers equation after reducing it 10 a cascade of elliptic problems. We would
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like to emphasize moreover. that our approach can be also used to solve equa-
tions involving homogeaeous pseudo-differential operators. A characteristic ex-
ample is v-Au = f with periodic boundary conditiont on [0.1]°. We have

= =2 and therefore o(f) = /& + & The most natural choice for S is

S = 2\'snn’f“/21 + sin’(£272) and one easily checks that the hypotheses of

theorem 11.2 are then satisfied. The algorithms presented previously can be
used (see Pj. Ponenti {16}).

IV  Numerical Application: Resolution of the
2D Burgers equations

In this section. we will use the periodized Battle-Lemarié's multiresolution anal-
vsis of splines of order m (see P.G. Lemarié [8]). The existence of collocation
projectors related to the spline breakpoints requires splines of even order and
the value m = 2 will be used in the applications.

As described in J. Liandrat et al. [11), any parabolic equation of the type

f ?}—lon-r(;(u): 0
u{0.t1 = u(1.?)

44)
t=ucfort=0

| 0t Tmaz. 0< 21

where La is a differential operato: of even order with positive symbol oata’). and
G is generally a nonlinear function of u and its derivatives, can be numerically
approached using a classical finite differcnce time discretization scheme followed
by a vanational approximation of the resulting elliptic problems. \We show now
that the approach developed in the previous sections can be used efficiently to
provide this approximation

Following J. Liandrat et al. [11j we first introduce a segmentation {t..} M
of (0. Tmaxz](ie asequence {t.}M. such that G =1y < 1, < ... < ty = T'mar)
and now look for a sequence of functions of the r variable {u*" (£)}A, such
that u"'(z) is an approximation of a(z.{n).

With A, = thyy = 15.0 < n < Af. and considering first (44) as an ordinary
differential equation in time. a standard finite-difference discretisation leads to
the following iterative equation:

Cou™ V= Fut™ v Ay M Gl ) G (45)

where L., is a step forward operstor that together with F' is determined by
the cheice of the finite-difference appraximation of the time-dependent ordinary
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differential equation. We always assume that this approximation is at least semi
imnplicit for the linear part Lo and explicit for the nonlinear part. Therefore
3a > O such that £, = (I + adt,Ly) where [ stands for the identity operator.
By hypothesis. go(w) 2 0.V and then £,, has always a symbol bounded from
below by 1. .

Hence. assuming that {u'"=".l = 0....,i} and {G(w'"~" I = 0....j} are
known. the resolution of (435) falls under the scope of paragraph 111.3 and the
resolution of (44) can be therefore performned iteratively.

The biditnensional Burgers equation writes, with v = (u_, ua):

% + Ty =iy
v(0. 0 = utl.t)

v=wofort=0 (46

0<t<Tmar 0<r <1

Chocsing a constant step segmentation of 0.Tar] (ie.. a segmentation
such that 3A¢ such that ¥0 < n < M, 1, = nAt). an implicit Crank-Nickolson
time scheme {second order) for the linear term (¥ u), and an explicit second
order Adams-Bashlforth scherne for the noulinear term (Tu.u) we get

(1 - v%"-A) M LN (I + ;:%A) f‘”'\-(?(_:;_\?"l")'u'l) - %Vu:""\.u"‘"“)

and the solution can L weitten as

u'_n+ll ainel’

-y LA

u
with

. -l
g+t = (1-;'%'.5) (2u""’~é:<§Vui" ) %vu“-”.u;”-"\) (47)

To fall completely under the scope of paragraph 111.3. one should be able
to evaluate the point values of the nonlinear term of (47) We used the sim-
piest method availabls that consists, as classically done in spectral methods
{(C. Canuto et al. {3'). w0 “apply the nonlinear opetator on the grid points”™.
More precitely. the approximation of Tu''".u'" we used is £1(Tu ) =
Co3(C vr x (T ).Cvp(u')) where x it a term by term multiplication of finite
seq'm-nces and Cr" is the collocation projection introduced in section 111.2.

Then. for exch time step nAt. the problem clearly beloags to the class of
elliptic problems studied in section (M with L = 7~ v$dand f = 2u" -
&(BTu™ W™~ gTy'=1y"=11) The iterative form of the equation induces
some modifications of the general scheme presented in I11.3 and we therefore
provide the full scheme for an iteration of the Burgers approximation scheme:
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4.

. The inputs are the values of (u'™'(J. . (fg_:%u,)) and (%-;-:-QJ, M.

Fridp) = 2u™(0,) = &PV(TU'™ ui™'KJ,) is computed as descibed
above.

F5(x). the function of 1,7 interpolating the values F7(J,) s constructed
AFD =34y, 19

£ 1s then decomposed into the wavelet subspaces W)’ . 0< j < p-! and
17 as
Fr= Y (P 0W] e
Ag\"!
where co- = Lye(F)

u}“’ then becoines

u;."“' = Z ?""{r_.".\'rj’-":‘fo;
Aga!
where 97 = (¥*1= ¢y .
N

w;** is then expanded in terms of tk - set of functions (Fa BE 0 as

"t = N R0

LAY F- 3 3+
and L@ = T, g5

- From the pomnt values of T7{J;). &% (J,). and £770J,) we compute

{@"~1(J,)) and its gradient usiug the corrcspoading point value filters.

Finally using the values of (w4t Jp)) and of it gradient. we get the vajues
of (W (L)) = (U ;) ~ «w” (7. and 1ts gradient

IV.1 Storage and Complexity Analysis

As described above. the numerical code implements the ell.ptic solver in an at.
erative process. Since the time step At is constant. the charactenstics of the
elliptic solver does not deperd on the time index n. Then, the solver precaicu-
lations related o the whole parabolic problem are the same as the oncs related
to the elementary elliptic soiver (see section 111.5). This applies to the storage
aud to the complexity as well.



As it has been shown in the previous section however. extra work. not con-
nected to the elliptic solver itself but to the computation of the tight hand side
term of the iterative equation (47) is required. This extra wotk is related to the
storage of the fields at the different time steps involved in the three level time
step Adams-Bashforth Crazk-Nicholson scheme and to the point value evaly-
ation of the derivatives involved in the noalinear part. Again. it can be split
intc permanent and temporary stotage as well as in precalculation and main
program extra work.

Storage (in addition 10 the elliptic solver storage)

Permenenat starege (precalculations). One extra structure containing the
point values &-7*(J,) must be stored in one bidimensional array of size V' the
structure containing the point values g%?,.’(.l,) & given by transposition of the
previous one.

Temporary storage (actuel algorsthm;  The two fields u'™'. w'®=1 and ™=}
can be handled using three arrays of size A'.

Complexity analysis (in addition to the elliptic solver complexity)

Precalculation: The computation of PV, =, is performed in C x N opcra-

tions where. as in section 1115 the value of C 'depends on the precision of the
calculation.

Man progrem: The addition of complexity is related to steps (1). (5). (6)
and (7). Since these steps involve convolutions and term by term products. the
added complexity is again C N log N’

Finally, the total memory ased is 7 arrays of size N

The total complerity 1s O(N Jog(.V)).

Obviously, the total complexity of the whole resoiutior is M times the com-
plexity of one time step resolution

IV.2 Numerical Results

Test case on an r; translation invariant problem
The validation of our code har been performed on an 2o translation invari-
ant problem constructed using for the imitial condition (ur,. e, (.. 23) =
(8in{272;).0). Indeed. with such an initia! condition, the solution remains r»
translation invariant.

For an easy comparisoa to the well dccumented paper of C. Basdevant et al
I} weused v = 1073/ 1.

As explained in C. Basdevant et al (1], the pertinent quaatities are

du

e (0.5.1).

Ou .
ms = sup| 5;:("-”5':: T IUPEY Tmar),




and t.,, defined such that
O
‘——. =
31, (0.5,24,) = ms.

Table 48 exhibits the numerical results obtain using various values for the
ume step At. The maximum time step numerically acceptable was At = 0.0073.
In each case. the values of ms are computed by interpolation and the correspond-
ing values of t,,, are deduced. The comparison with the expected theoretical
values (first column) shows that our methcd competes favorably with the ma-
Jority of the schemes presented in C. Basdevaut et al. [1). A complete study of
the timne step size dependence of the results connected to the stability analysis
of the parabolic algorithm will be published later.

Eract | A: 10.0005 0.001 0.0025 0.005

{ =304.C103 | ms | —304.6302 | -305.727 | -309.4354 | -316.54534 |  (4§)
0.255237 | twm, | 0.253 0.252 0.25 0.245
Test case on a first diagonal translation invariant problem

Our sccoud test case is performed on a first disgonal (ranslation invariant prob-
lem constructed using (uz,.wo,)r,,22) = (Mn(2x(r; + ra). sin(2x(z- + 22)).
Again. the solution can be compared to the reference solution of . Basdevant
et al. [1] thanks to a 43° rotation and to a time dilation of factor 2. Bowever.
according to our reference axes. it is obviously a fully bidimensional salution.

Figures 1.2 and 3 show the isoline values of the numerical approximations
computed with ¢ = 001 at t = 0. ¢ = (.15 and { = 0.50. The first diagonal
translation invariance is kept and we obtain the values ms = 249.0528 and 7., =
0.123. The expected theoretical values are ~304.0103 for ms and 0.1276133 for
t~.. This is not as good as before but one should note that the reeclution 1n
the direction perpendicular to the front axis is sow half the one in our previous
calculations.

Since the uitimate application of all this work is the development of adaptive
algotithms (i.e. the development of aigorithms handling approximation spaces
of reduced dimension adapted to the solution regularity (see for instance Pj.
Ponenti (16]).we have estimated. at various times. the wavelet basie adapted
to the appraximation and detined as the lowest cardinal m = 9 spline wavelet
hasis preserving the L? notm of the approximation with a precision of 10-¢.
The cclumne of table (19) show for each scale 0 < j < 7 the number of wavelete
selected in the adaptedd basis related to the approximated solution at various
times. [t appears that. compared to the full bacis of s (last column). these

bases have a drastically reduced cardinal {we defived the rate of compreseion
as ‘-‘—"—M—-"-‘!*'-'l‘-‘!’) even if the gradients of the soluticn fill up » Jarge

. CMIma ofV, i
domain made of two complete lines of the plane (sec figures 1. 2 and 3)

R



Figure 1: luitia! condition. 1, = 0.
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Figure 2. Approximnated solution. ¢; = (.13.
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Figure 3: Approximated solution. t, = 9.30
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Conclusion

In this paper. we have proposed an inversion scheme for elliptic problems
based on biorthogonal wavelets. The approximation of elliptic problem solutions
is constructed and leads to stable and fast numerical algorithms.

Numerica) tests related to the approximation of the parabolic Burgers equa-
tions transformed into a cascade of elliptic problems are provided.

The appraximation scheme is based on convolution operators and can there-
fore be theoretically used in the framework of adapited spaces of approximation
As mentioned however. the nice tensorial product structure that enforces nu-
merical efficiency is fragile and is generally destroyed when applying the scheme
directly. Other approximations for the step forward operator. should allow
one to use efficiently this approximation in a general context of adapted multi-
dimensiou spaces of approximation.
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